Telegram Group & Telegram Channel
Объясните, как работает градиентный бустинг на примере задачи регрессии?

Градиентный бустинг — это мощный ансамблевый метод, который комбинирует предсказания нескольких моделей, обучая их последовательно. Часто в качестве базовых моделей выступают деревья решений. Суть метода в том, что каждая новая модель пытается исправить ошибки предыдущих, приближаясь к идеальному результату шаг за шагом.

▪️Сначала строится базовая модель, дающая простое предсказание целевой переменной. На этом этапе, конечно, модель далека от идеала. Мы измеряем, насколько предсказания модели отличаются от настоящих значений, используя функцию потерь.

▪️Если модель предсказала на 5 больше, чем реальное значение, идеальная поправка для неё была бы -5. Новая модель обучается предсказывать именно этот антиградиент (то есть разницу между предсказанным и истинным значением) для текущей функции потерь. Затем к предсказаниям базовой модели добавляется результат новой модели, корректируя их в нужную сторону.

▪️На каждом следующем шаге очередная модель будет пытаться предсказать антиградиент функции потерь, чтобы улучшить общее предсказание. Это добавление моделей продолжается до тех пор, пока не достигается нужное качество.

▪️В результате предсказание целевой переменной представляет собой взвешенную сумму всех построенных моделей.

#машинное_обучение



tg-me.com/ds_interview_lib/666
Create:
Last Update:

Объясните, как работает градиентный бустинг на примере задачи регрессии?

Градиентный бустинг — это мощный ансамблевый метод, который комбинирует предсказания нескольких моделей, обучая их последовательно. Часто в качестве базовых моделей выступают деревья решений. Суть метода в том, что каждая новая модель пытается исправить ошибки предыдущих, приближаясь к идеальному результату шаг за шагом.

▪️Сначала строится базовая модель, дающая простое предсказание целевой переменной. На этом этапе, конечно, модель далека от идеала. Мы измеряем, насколько предсказания модели отличаются от настоящих значений, используя функцию потерь.

▪️Если модель предсказала на 5 больше, чем реальное значение, идеальная поправка для неё была бы -5. Новая модель обучается предсказывать именно этот антиградиент (то есть разницу между предсказанным и истинным значением) для текущей функции потерь. Затем к предсказаниям базовой модели добавляется результат новой модели, корректируя их в нужную сторону.

▪️На каждом следующем шаге очередная модель будет пытаться предсказать антиградиент функции потерь, чтобы улучшить общее предсказание. Это добавление моделей продолжается до тех пор, пока не достигается нужное качество.

▪️В результате предсказание целевой переменной представляет собой взвешенную сумму всех построенных моделей.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/666

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA